
LECTURE 13

MONDAY s
FEBRUARY 24



Project: Problem

*¥⇒÷ii÷¥÷÷÷



Project: Milestones⇒ -

.



Project: Verification Tool
=

-7µA .

⑦→ most u. f. T .

Cambridgepig .



 Paradigms of Verification (1)
Model Checking
   - A transition graph is built based on all possible states.
   - An algorithm is run to ensure 
     that certain properties are satisfied
   - Automated
   - State Explosion: 
         not terminating if the state space is huge 
         (combinatorial on sizes of variable domains)

Example:
inc
   require
      x < 5
   do
      x := x + 1
   end

dec
   require
      x ≥ 0
   do
      x := x - 1
   end
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 Paradigms of Verification (2)
Theorem Proving
   - System is encoded as predicates (e.g., Hoare Triples in EECS3311)
   - A proof system of deductions (axioms, lemmas)
        is used to prove that the system entails
        certain properties.
   - Manual (EECS1090 proofs on a computer)
   - Complete input domains of variables can be encoded.

Example:
Given    ¬ ( ¬ p ) ≡ p
         p ⇒ q ≡  ¬ p ∨ q

Prove:  ¬ p ⇒ q ≡ p ∨ q

Example:
swap
   require
      x > y
   do
      temp := x; x := y; y := temp
   ensure
      y > x
   end
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 Paradigms of Verification (3)
Constraint Solving
   - System is encoded as predicates (e.g., Hoare Triples in EECS3311)
   - Given predicate p(x), an algorithm is used to either:
           (1) find a witness x s.t. p(x) is true.
           (2) report that no such witness exists
   - Automated
   - How do we then use a solver to prove that p(x) is a tautology?
   - Combinatorial Explosion on Variable Domains

Example:
Prove that p ∧ q ≡ q ∧ p
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ANTLR (ANother Tool for Language Recognition)

ANTLR

- Parser.java
- Lexer.java
- Visitor classes

- Parser.java
- Lexer.java
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Composite Pattern of Model Classes

Number

VariableDeclaration

Variable Multiplication

Addition

ExpressionProgram expressions: List<..>



Building Model Objects from Parse Trees

i : INT = 5
j : INT = 7
i + j * 3

Variable

id

VariableDeclaration
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value
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Backtrack-Free Grammar
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Top-Down Parsing: Algorithm
with lookahead
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Backtrack-Free Grammar: Exercise
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Left-Factoring: Removing Common Prefixes

÷÷¥÷÷÷
.



Implementing a Recursive-Descent Parser
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