Leture 1>
Mouony , Fegaumy %}

input
semantic domain semantic domaii

N\
\
\

Syntax of Output/
/ Language
Language

Ld

Syntax of
Input/Source
Language
L

\

= 2

>

| 1
1 conforms to 1 conforms to
1

: D
Input/Source Lssed ' Your J : Output/Target bissal BN Verification ’
Program \ Compiler] Program Tool
4
\ %
--------- B Ee—msas— === B/

o

- -

Milestones.ef-the Project

1. | Conlirm Team Member(sdand g, Target Verification Tooll

By the enfi of Tuesday, March 3, siibmit a plain text file team. txt for your team via the Prism account of a

memer:

submit 4302 Projeciyteam.txt

=

2. | Demonstrate Proficiency with the Chosen Target Verification Tool [3% | I

~ (5, Thursday March 5 o Friday#Vlarch 6 (about 2 weeks after the project is released), your team is
required tastiieet with Jackie and demonstrate that you are familiar with the verification tool (and its
specification language) you choose.

— During the meeting, you must demonstrate (using your computer) 5 non-trivial examples (ones that
show the various target language features that are relevant to your compilation) of verification. For each
example, you will demonstrate how to verify it using the tool.

In this meeting, Jackie may suggest specific tasks that your team should complete and will
be included in the evaluation of the second milstone.

[5%]

3. | Demonstrate Satisfactory Progress on the Comniler |

— On ThursdajyMarch 1960r Friday March 20 _(bout 1 month after the project is released), your team
is required % meet witil Jathie and dewiSismast a working version of your compiler on the following basic
featurgsof the sourge language 1egtures (of syntax of your own design), including:

ovariable declarations

» variable assignments !
e variable references (i.e., referring {» declared variables in expressionsy

e arithmetic, relational, and logical/expressions

e conditionals

s\specification (e.g., preconditighs, postconditions, invariants, property assertions\=iii*Hipat programs

tifat guide the target verification
During the meeting, you must demonstrate (using your compfter) 5 non-trivial examples { nes that
show the above source language features) of verification. For each éX&mpe, you will®desGlistrate how to
verify it using your compiler (e.g., given an input file, your tool will compile it into another file which can
be taken as input by the target verification tool).
— In this meeting, Jackie may suggest specific tasks that your team should complete and will
be included in the evaluation of the final project in April.

These two milestones are meant to make sure that you are on the right track. Based on your demo, Jackie will

give you feedback.

Project: Milestones

Project: Verification Tool

You must use the ANTLR4 Parser Generator (for Java) to build your compiler.
[—————1

For the target verification tool, you must choose from one of the following (and confirm by the due date; see
Section 7)., where a T&ested starting point is provided for each tool:

https://pvs.csl.sri.com/

his tool is available in Prism and used by EFECS4312 Software Engineering Requirements.
o More info here: https:rwj}i.eecs.yorku.ca/proj ect/sel-students/p:tutorials:pvs:start

lﬂ- ¢ (° https://coq.inria. fr/

J ° https://isabelle.in.tum.de/
[ML"’ https://alloytools.org/
‘)"b - https://pat.comp.nus.edu.sg/

http://spinroot.com/spin/whatispin.html

i https://rise4fun.com/z3/tutorial

Nonetheless, if there is a particular verification tool which you prefer to working with but it is not
in the above list, speak to Jackie by the due date of submitting the team.txt file (See Section
for the due date).

SEbAe built Based & all possuble s’ra’res \(5

roer’rles are satisfied ﬂ I.M-//E mp’dd
S) /

————
-

Paradigms of Verification (2)

Theorem Proving /

-lszs’rea is encoded as!;redlca’re‘ (e.g., Hoare Triples in EECS3311)

- A proof system of deductions (axioms, lemma
is used to prove that the system entail >
0 properties. o .,'X‘F
- ManyalAEECS1090 proofs on a _computer)

- ete input domains of variables can be encode

Example: (9’ \l? ’X} Exam_ple.

2ap. Given a(-p)=p

) CELIORTR P,
]

Prove: - p=q=pvVvq
Zaf-4>S

Paradi-gm§ of Verification (3)
onstraint Solving

-,Systemis encoded redicatg#(e.g., Hoare Triples in EECS3311)

s,
= Given predicate p(x), an algorithm is used to either: y‘
(1) find a witness x s.t. p(x) is true. -1 .S /7
(2) report that no such witness exists | T r‘gl
——

- Automated
- How do we then use a solver to prove that p(x) is a tautology? ﬁ

- Combinatorial Explosion on Variable Domains

) A P‘(
Example: ZN;’:Mj‘

m
Prove thatlp Arq=qAp a MNrneése

ANTLR (ANother Tool for Language Recognition)

input file
Compiler
L

Q - Lexe

-

Composite Pattern of Model Classes

@ expressions: List<..>

(Expression’
b @

@leDeclaraﬁon ‘m

Building Model Objects from Parse Trees

R

INT = 7 exIpr +}(wa

i expr * expr

prog
j 3
Program 01 2
expressions ’\)l\) Addition j Variable
left -~ id
right - I,
) Variable
VariableDeclaration VariableDeclaration Hluttiplication id
left -~

id id
Type type right -~ \2' Number

value

value

Backtrack-Free Grammar

FIRST(() if ¢ ¢ FIRST(3)
FIRST(3) u FOLLOW(A) otherwise

FIRST (A— 3) = {

FIRST(3) is the extended version where 5 may be 5162 .. (n

A=y |v2]...|vn satisfying:
Vi,j:1<i,j<nni#jeFIRST (v;) nFIRST (v;) =@

Top-Down Parsing: Algorithm

backtrack = pop focus.siblings; focus := focus.parent; focus.resetChildren w|‘|'h lOOkahead

ALGORITHM: TDParse
INPUT: CcFrG G=(V, X, R, S)
OUTPUT: Root of a Parse Tree or Syntax Error
PROCEDURE : + Term Expr’
root := a new node for the start symbol S
focus := root
initialize an empty stack trace
trace.push (null) Factor Term’
word := NextWord ()
while (true):) ,
if focus e V then % use FOLLOW set as wellf! * Jactor Teves

Expr
Term Expr’

- Term Expr’
€

x Factor Term’

€

if 3 unvisited rule focus — 3182 ...Bn<€R

L Expr)
create fB1,85...8n as children of focus il
trace. push (ﬂnﬁn_1 &G & Bz)
focus := By fel
else
if focus = S then report syntax error
else backtrack
elseif word matches focus then
word := NextWord()
focus := trace.pop ()
elseif word = EOF A focus = null then return root
else backtrack

Term’

Backtrack-Free Grammar: Exercise

FIRST(3) if ¢ ¢ FIRST()
FIRST(5) u FOLLOW(A) otherwise

FIRST (A-) = {

FIRST(3) is the extended version where 5 may be 51062 .. 6

A=y |72 |...]|vn satistying:
Vi,j:1<i,j<nnai+jeFIRST (v;) nFIRST"(7;) = &

Is the following CFG backtrack free?

11 Factor name
12 name [ArgList]
13 name (ArgList)

16 MoreArgs
17

N
|
|

15 ArgList — Expr MoreArgs
— , Expr MoreArgs
|

5

Left-Factoring: Removing Common Prefixes

Identify |a common prefix a:

il as o) lan G- [].

[each of 1,72, . .., does not begin with «]

Rewrite |that production rule

\V1|72|

11 IFactor‘

[ArgList]
| Jame (ArgList)

12

13

15 :' Expr MoreArgs
16 — , Expr MoreArgs
7

ExprPrim()

'TF'W__O_W=®V word {):hen /+« Rules 2, 3 x/
—) word := NextWord/()
if (Term())
tﬁaﬁ-?éturn ExerPrim()
else return false
slseif word =jv word = eof then /+ Rule 4 */

return true e

else
report a syntax error
return false

end

lTerm() -

/LG

o an),,
ol o e

