
LECTURE 13

MONDAY s
FEBRUARY 24

Project: Problem

*¥⇒÷ii÷¥÷÷÷

Project: Milestones⇒ -

.

Project: Verification Tool
=

-7µA .

⑦→ most u. f. T .

Cambridgepig .

 Paradigms of Verification (1)
Model Checking
 - A transition graph is built based on all possible states.
 - An algorithm is run to ensure
 that certain properties are satisfied
 - Automated
 - State Explosion:
 not terminating if the state space is huge
 (combinatorial on sizes of variable domains)

Example:
inc
 require
 x < 5
 do
 x := x + 1
 end

dec
 require
 x ≥ 0
 do
 x := x - 1
 end

: :

→ia n.org.
µg examples

oo¥'a¥aw%÷i÷÷oIT A ⇒ def)j
.ci#l??...deaddeda

 Paradigms of Verification (2)
Theorem Proving
 - System is encoded as predicates (e.g., Hoare Triples in EECS3311)
 - A proof system of deductions (axioms, lemmas)
 is used to prove that the system entails
 certain properties.
 - Manual (EECS1090 proofs on a computer)
 - Complete input domains of variables can be encoded.

Example:
Given ¬ (¬ p) ≡ p
 p ⇒ q ≡ ¬ p ∨ q

Prove: ¬ p ⇒ q ≡ p ∨ q

Example:
swap
 require
 x > y
 do
 temp := x; x := y; y := temp
 ensure
 y > x
 end

-

=?pcs"
Dxsy⇒ I
5¥ I

def. of ⇒s

 Paradigms of Verification (3)
Constraint Solving
 - System is encoded as predicates (e.g., Hoare Triples in EECS3311)
 - Given predicate p(x), an algorithm is used to either:
 (1) find a witness x s.t. p(x) is true.
 (2) report that no such witness exists
 - Automated
 - How do we then use a solver to prove that p(x) is a tautology?
 - Combinatorial Explosion on Variable Domains

Example:
Prove that p ∧ q ≡ q ∧ p

¥
.

youfinesse.
a

"

m.

t÷÷÷÷÷

ANTLR (ANother Tool for Language Recognition)

ANTLR

- Parser.java
- Lexer.java
- Visitor classes

- Parser.java
- Lexer.java

Your
Java Classes

uses

uses

generates

generates

input file

output

Compiler

''

D

Composite Pattern of Model Classes

Number

VariableDeclaration

Variable Multiplication

Addition

ExpressionProgram expressions: List<..>

Building Model Objects from Parse Trees

i : INT = 5
j : INT = 7
i + j * 3

Variable

id

VariableDeclaration
id
type

value

Multiplication

left
right

Addition
left
right

Number

num

VariableDeclaration
id
type

value

Variable

id

expressions
Program 0 1 2

prog00
'

EEFEEFEEE:*'

Backtrack-Free Grammar

of

Top-Down Parsing: Algorithm
with lookahead

. .
. . .

 .

Term’

Backtrack-Free Grammar: Exercise

E

Left-Factoring: Removing Common Prefixes

÷÷¥÷÷÷
.

Implementing a Recursive-Descent Parser

t÷÷÷¥¥÷÷÷

LLAN

¥ .

KIT -na

't job ?
"

↳De

HE. ¥¥%:alternative - mum

÷:⇒
le =D

